

CO₂ annual emissions and atmospheric conc. (1750-2021)

European Union policy efforts and projection

Annual EU emissions, current and proposed target reductions from 1990 baseline

USA policy efforts and projections

Historical and Modeled Net U.S. Greenhouse Gas Emissions (Including Land Carbon Sinks)

billion metric tons CO₂-equivalent (Gt CO₂-e)¹

Status Quo Not Sufficient: 2°C pathway

- Mankind has already exceeded >2000 Gt of carbon budget and continuing @ 40 Gt/annum
- For 2°C we need to retain this total below ~3000 Gt
- For 2°C we need to have 5 Gt per annum of carbon removal per annum operating by 2050 and 20 Gt operating by 2100

Potential Carbon removal pathways

Impact ratings are from the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report, apart from 'Measurement and verification', which are based on the authors' judgement.

*BECCS, bioenergy with carbon capture and storage; †GtCO₂, gigatonnes of CO₂.

Direct Air Capture - Technology Landscape

Susteon

CCUS Source Concentration Challenge

Coal Power Plant

Gas Power Plant

Air Capture

NG Processing Plant

Ammonia Plant

Ethanol Plant

Cement Plant

CO₂ Partial Pressure and Capture Cost

Cost of Capturing CO₂ from Industrial Sources, January 10, 2014, DOE/NETL-2013/1602

Conventional CCUS Value Chain Costs

DAC Problem Definition

Needs:

- Highly selective
- Minimal binding energy
- Fast kinetics
- High capacity
- Economic
- Long life Durability

Current DAC Technologies

Land

1. Membranes 5. Kelp/Seaweed-Based Capture **6. Liquid Solvents** 2. Solid Sorbents Alkali metals (chemisorption) KOH Amines (chemisorption) Retrofitting cooling towers Activated carbons (physisorption) **Amines Direct Air** Zeolites (physisorption) **Capture** (DAC) MOFs (physisorption) 7. Ocean Capture **Technologies** Resins (humidity swing) Electrodialysis Electrolysis 3. Electrochemical 8. Carbon Mineralization (+ Regeneration) 4. Cryogenic Coastal Arctic/Antarctica **Forests** Tropopause

Established Players

Company	Material	Challenges	Cost
Global Thermostat	PEIMonoliths	 Desorption steam could condenses, stripping amine Amine reactivity with O₂ in air 	■ >100 \$/t-CO ₂
E climeworks	AmineAmine+ MOFsLaminate Filters	 Amine reacts with O₂ in air Higher pressure drop 	■ ~300 to 600 \$/t-CO ₂
Carbon Engineering	 K₂CO₃ – CaCO₃ loop Liquid Solution 	 Equipment count and cost Oxygen impurity in CO₂ 	■ ~94 to 232 \$/t-CO ₂ (?)
Sustæra	Alkali carbonateMonoliths	Electricity for regeneration	■ Commercial projection <\$100/t-CO ₂

Approaches to DAC

- Mature players like Carbon Engineering, Climeworks etc.
- 29 younger companies, many of which have emerged in the last couple of years

Climeworks

Climeworks technology demonstrated in 14 plants to date:

Combining Climeworks' temperature-vacuum swing adsorption technology with Svante's structured adsorbents:

Climeworks' DAC technology

- + Proven technology
- + Modular, versatile hardware
- + Flexible process

Project goals

- + Combined sorbent/process optimization for DAC
- + Demonstrate at TRL 5

Svante's structured adsorbent technology

- + Rapid cycling
- + Adaptable geometry
- + Active phase flexibility

Global Thermostat

Carbon Engineering

Plans to scale up to 1 million ton/yr of CO₂.

Faster kinetics allows for quick cycles and better utilization of capex

Current Capture costs and permanence

Cleantechnica, MarginaCarbon

Carbon removal will follow proven cost curves as it scales

Unsubsidized Wind LCOE

Unsubsidized Solar PV LCOE

Scale of the Challenge and Opportunities for innovators

Birth of a new trillion-dollar industry with large opportunity set for innovators.

Scale	~10000 tCO ₂ / annum in 2021 to 5,000,000,000 tCO ₂ /annum in 2050 500,000x Scale-up for 5 GtCO ₂	
Energy	150 to 250 GWyr of energy / GtCO ₂ Compare to ~2,600 GWyr of global annual electricity consumption	
Land	~0.5 Mha for capture + ~3 Mha for electricity generation / GtCO₂ Compare with 80 MHa of forests for equivalent capture Texas is 70 Mha	
Capital	~\$1B / MtCO ₂ OR \$1T / GtCO ₂	
Other	Water, Specialized manufacturing, Sequestration sites etc.	

Thank you

Creating solutions for a NET ZERO world www.susteon.com

